lygia
/math
/const
)some useful math constants
#ifndef EIGHTH_PI
#define EIGHTH_PI 0.39269908169
#endif
#ifndef QTR_PI
#define QTR_PI 0.78539816339
#endif
#ifndef HALF_PI
#define HALF_PI 1.5707963267948966192313216916398
#endif
#ifndef PI
#define PI 3.1415926535897932384626433832795
#endif
#ifndef TWO_PI
#define TWO_PI 6.2831853071795864769252867665590
#endif
#ifndef TAU
#define TAU 6.2831853071795864769252867665590
#endif
#ifndef INV_PI
#define INV_PI 0.31830988618379067153776752674503
#endif
#ifndef INV_SQRT_TAU
#define INV_SQRT_TAU 0.39894228040143267793994605993439 // 1.0/SQRT_TAU
#endif
#ifndef SQRT_HALF_PI
#define SQRT_HALF_PI 1.25331413732
#endif
#ifndef PHI
#define PHI 1.618033988749894848204586834
#endif
#ifndef EPSILON
#define EPSILON 0.0000001
#endif
#ifndef GOLDEN_RATIO
#define GOLDEN_RATIO 1.6180339887
#endif
#ifndef GOLDEN_RATIO_CONJUGATE
#define GOLDEN_RATIO_CONJUGATE 0.61803398875
#endif
#ifndef GOLDEN_ANGLE // (3.-sqrt(5.0))*PI radians
#define GOLDEN_ANGLE 2.39996323
#endif
#ifndef DEG2RAD
#define DEG2RAD (PI / 180.0)
#endif
#ifndef RAD2DEG
#define RAD2DEG (180.0 / PI)
#endif
#ifndef EIGHTH_PI
#define EIGHTH_PI 0.39269908169
#endif
#ifndef QTR_PI
#define QTR_PI 0.78539816339
#endif
#ifndef HALF_PI
#define HALF_PI 1.5707963267948966192313216916398
#endif
#ifndef PI
#define PI 3.1415926535897932384626433832795
#endif
#ifndef TWO_PI
#define TWO_PI 6.2831853071795864769252867665590
#endif
#ifndef TAU
#define TAU 6.2831853071795864769252867665590
#endif
#ifndef INV_PI
#define INV_PI 0.31830988618379067153776752674503
#endif
#ifndef INV_SQRT_TAU
#define INV_SQRT_TAU 0.39894228040143267793994605993439 // 1.0/SQRT_TAU
#endif
#ifndef SQRT_HALF_PI
#define SQRT_HALF_PI 1.25331413732
#endif
#ifndef PHI
#define PHI 1.618033988749894848204586834
#endif
#ifndef EPSILON
#define EPSILON 0.0000001
#endif
#ifndef GOLDEN_RATIO
#define GOLDEN_RATIO 1.6180339887
#endif
#ifndef GOLDEN_RATIO_CONJUGATE
#define GOLDEN_RATIO_CONJUGATE 0.61803398875
#endif
#ifndef GOLDEN_ANGLE // (3.-sqrt(5.0))*PI radians
#define GOLDEN_ANGLE 2.39996323
#endif
#ifndef DEG2RAD
#define DEG2RAD (PI / 180.0)
#endif
#ifndef RAD2DEG
#define RAD2DEG (180.0 / PI)
#endif
#ifndef EIGHTH_PI
#define EIGHTH_PI 0.39269908169
#endif
#ifndef QTR_PI
#define QTR_PI 0.78539816339
#endif
#ifndef HALF_PI
#define HALF_PI 1.5707963267948966192313216916398
#endif
#ifndef PI
#define PI 3.1415926535897932384626433832795
#endif
#ifndef TWO_PI
#define TWO_PI 6.2831853071795864769252867665590
#endif
#ifndef TAU
#define TAU 6.2831853071795864769252867665590
#endif
#ifndef INV_PI
#define INV_PI 0.31830988618379067153776752674503
#endif
#ifndef INV_SQRT_TAU
#define INV_SQRT_TAU 0.39894228040143267793994605993439 // 1.0/SQRT_TAU
#endif
#ifndef SQRT_HALF_PI
#define SQRT_HALF_PI 1.25331413732
#endif
#ifndef PHI
#define PHI 1.618033988749894848204586834
#endif
#ifndef EPSILON
#define EPSILON 0.0000001
#endif
#ifndef GOLDEN_RATIO
#define GOLDEN_RATIO 1.6180339887
#endif
#ifndef GOLDEN_RATIO_CONJUGATE
#define GOLDEN_RATIO_CONJUGATE 0.61803398875
#endif
#ifndef GOLDEN_ANGLE // (3.-sqrt(5.0))*PI radians
#define GOLDEN_ANGLE 2.39996323
#endif
//#ifndef DEG2RAD
//#define DEG2RAD (PI / 180.0)
//#endif
//#ifndef RAD2DEG
//#define RAD2DEG (180.0 / PI)
//#endif
const EIGHTH_PI: f32 = 0.39269908169;
const QTR_PI: f32 = 0.78539816339;
const HALF_PI: f32 = 1.5707963267948966192313216916398;
const PI: f32 = 3.1415926535897932384626433832795;
const TWO_PI: f32 = 6.2831853071795864769252867665590;
const TAU: f32 = 6.2831853071795864769252867665590;
const INV_PI: f32 = 0.31830988618379067153776752674503;
const INV_SQRT_TAU = 0.39894228040143267793994605993439;
const SQRT_HALF_PI: f32 = 1.25331413732;
const PHI: f32 = 1.618033988749894848204586834;
const EPSILON: f32 = 0.0000001;
const GOLDEN_RATIO: f32 = 1.6180339887;
const GOLDEN_RATIO_CONJUGATE: f32 = 0.61803398875;
const GOLDEN_ANGLE: f32 = 2.39996323;
// const DEG2RAD: f32 = PI / 180.0;
// const RAD2DEG: f32 = 180.0 / PI;
#ifndef QTR_PI
#define QTR_PI 0.78539816339
#endif
#ifndef HALF_PI
#define HALF_PI 1.5707963267948966192313216916398
#endif
#ifndef PI
#define PI 3.1415926535897932384626433832795
#endif
#ifndef TWO_PI
#define TWO_PI 6.2831853071795864769252867665590
#endif
#ifndef TAU
#define TAU 6.2831853071795864769252867665590
#endif
#ifndef INV_PI
#define INV_PI 0.31830988618379067153776752674503
#endif
#ifndef INV_SQRT_TAU
#define INV_SQRT_TAU 0.39894228040143267793994605993439 // 1.0/SQRT_TAU
#endif
#ifndef PHI
#define PHI 1.618033988749894848204586834
#endif
#ifndef EPSILON
#define EPSILON 0.0000001
#endif
#ifndef GOLDEN_RATIO
#define GOLDEN_RATIO 1.6180339887
#endif
#ifndef GOLDEN_RATIO_CONJUGATE
#define GOLDEN_RATIO_CONJUGATE 0.61803398875
#endif
#ifndef GOLDEN_ANGLE // (3.-sqrt(5.0))*PI radians
#define GOLDEN_ANGLE 2.39996323
#endif
#ifndef MAX_FLOAT_VALUE
#define MAX_FLOAT_VALUE 3.402823E+38
#endif
LYGIA is dual-licensed under the Prosperity License and the Patron License for sponsors and contributors.
Sponsors and contributors are automatically added to the Patron License and they can ignore the any non-commercial rule of the Prosperity Licensed software (please take a look to the exception).
It's also possible to get a permanent comercial license hook to a single and specific version of LYGIA.
Sign up for the news letter bellow, joing the LYGIA's channel on Discord or follow the Github repository