lygia
/space
/rotate
)rotate a 2D space by a radian r
Dependencies:
Use:
rotate(<vec3|vec2> v, float r [, vec2 c])
#ifndef FNC_ROTATE
#define FNC_ROTATE
vec2 rotate(in vec2 v, in float r, in vec2 c) {
return rotate2d(r) * (v - c) + c;
}
vec2 rotate(in vec2 v, in float r) {
#ifdef CENTER_2D
return rotate(v, r, CENTER_2D);
#else
return rotate(v, r, vec2(.5));
#endif
}
vec2 rotate(vec2 v, vec2 x_axis) {
#ifdef CENTER_2D
v -= CENTER_2D;
#endif
vec2 rta = vec2( dot(v, vec2(-x_axis.y, x_axis.x)), dot(v, x_axis) );
#ifdef CENTER_2D
rta += CENTER_2D;
#endif
return rta;
}
vec3 rotate(in vec3 v, in float r, in vec3 axis, in vec3 c) {
return (rotate4d(axis, r) * vec4(v - c, 1.)).xyz + c;
}
vec3 rotate(in vec3 v, in float r, in vec3 axis) {
#ifdef CENTER_3D
return rotate(v, r, axis, CENTER_3D);
#else
return rotate(v, r, axis, vec3(0.));
#endif
}
vec4 rotate(in vec4 v, in float r, in vec3 axis, in vec4 c) {
return rotate4d(axis, r) * (v - c) + c;
}
vec4 rotate(in vec4 v, in float r, in vec3 axis) {
#ifdef CENTER_4D
return rotate(v, r, axis, CENTER_4D);
#else
return rotate(v, r, axis, vec4(0.));
#endif
}
#if defined(FNC_QUATMULT)
vec3 rotate(QUAT q, vec3 v) {
QUAT q_c = QUAT(-q.x, -q.y, -q.z, q.w);
return quatMul(q, quatMul(vec4(v, 0), q_c)).xyz;
}
vec3 rotate(QUAT q, vec3 v, vec3 c) {
vec3 dir = v - c;
return c + rotate(q, dir);
}
#endif
#endif
Dependencies:
Use:
rotate(<float3|float2> st, float radians [, float2 center])
#ifndef FNC_ROTATE
#define FNC_ROTATE
float2 rotate(in float2 st, in float radians, in float2 center) {
return mul(rotate2d(radians), (st - center)) + center;
}
float2 rotate(in float2 st, in float radians) {
#ifdef CENTER_2D
return rotate(st, radians, CENTER_2D);
#else
return rotate(st, radians, float2(0.5, 0.5));
#endif
}
float2 rotate(float2 st, float2 x_axis) {
#ifdef CENTER_2D
st -= CENTER_2D;
#endif
float2 rta = float2( dot(st, float2(-x_axis.y, x_axis.x)), dot(st, x_axis) );
#ifdef CENTER_2D
rta += CENTER_2D;
#endif
return rta;
}
float3 rotate(in float3 xyz, in float radians, in float3 axis, in float3 center) {
return mul(rotate4d(axis, radians), float4(xyz - center, 1.)).xyz + center;
}
float3 rotate(in float3 xyz, in float radians, in float3 axis) {
#ifdef CENTER_3D
return rotate(xyz, radians, axis, CENTER_3D);
#else
return rotate(xyz, radians, axis, float3(0.0, 0.0, 0.0));
#endif
}
float4 rotate(in float4 xyzw, in float radians, in float3 axis, in float4 center) {
return mul(rotate4d(axis, radians), (xyzw - center)) + center;
}
float4 rotate(in float4 xyzw, in float radians, in float3 axis) {
#ifdef CENTER_4D
return rotate(xyzw, radians, axis, CENTER_4D);
#else
return rotate(xyzw, radians, axis, float4(0.0, 0.0, 0.0, 0.0));
#endif
}
#endif
Dependencies:
Use:
rotate(<float3|float2> v, float r [, float2 c])
#ifndef FNC_ROTATE
#define FNC_ROTATE
float2 rotate(float2 v, float r, float2 c) {
return rotate2d(r) * (v - c) + c;
}
float2 rotate(float2 v, float r) {
#ifdef CENTER_2D
return rotate(v, r, CENTER_2D);
#else
return rotate(v, r, float2(.5));
#endif
}
float2 rotate(float2 v, float2 x_axis) {
#ifdef CENTER_2D
v -= CENTER_2D;
#endif
float2 rta = float2( dot(v, float2(-x_axis.y, x_axis.x)), dot(v, x_axis) );
#ifdef CENTER_2D
rta += CENTER_2D;
#endif
return rta;
}
float3 rotate(float3 v, float r, float3 axis, float3 c) {
return (rotate4d(axis, r) * float4(v - c, 1.)).xyz + c;
}
float3 rotate(float3 v, float r, float3 axis) {
#ifdef CENTER_3D
return rotate(v, r, axis, CENTER_3D);
#else
return rotate(v, r, axis, float3(0.));
#endif
}
float4 rotate(float4 v, float r, float3 axis, float4 c) {
return rotate4d(axis, r) * (v - c) + c;
}
float4 rotate(float4 v, float r, float3 axis) {
#ifdef CENTER_4D
return rotate(v, r, axis, CENTER_4D);
#else
return rotate(v, r, axis, float4(0.));
#endif
}
#if defined(FNC_QUATMULT)
float3 rotate(QUAT q, float3 v) {
QUAT q_c = QUAT(-q.x, -q.y, -q.z, q.w);
return quatMul(q, quatMul(float4(v, 0), q_c)).xyz;
}
float3 rotate(QUAT q, float3 v, float3 c) {
float3 dir = v - c;
return c + rotate(q, dir);
}
#endif
#endif
Dependencies:
fn rotate(st: vec2f, radians: f32) -> vec2f {
return rotate2d(radians) * (st - 0.5) + 0.5;
}
LYGIA is dual-licensed under the Prosperity License and the Patron License for sponsors and contributors.
Sponsors and contributors are automatically added to the Patron License and they can ignore the any non-commercial rule of the Prosperity Licensed software (please take a look to the exception).
It's also possible to get a permanent comercial license hook to a single and specific version of LYGIA.
Sign up for the news letter bellow, joing the LYGIA's channel on Discord or follow the Github repository