LYGIA Shader Library

mandelbulbSDF (lygia/v1.1.6/sdf/mandelbulbSDF)

Returns the mandelbulb SDF For more information about the mandlebulb, check this article

Dependencies:

Use:

mandelbulbSDF(<vec2> st)

Check it on Github



#ifndef FNC_MANDELBULBSDF
#define FNC_MANDELBULBSDF
vec2 mandelbulbSDF( in vec3 st ) {
   vec3 zeta = st;
   float m = dot(st,st);
   float dz = 1.0;
   float n = 8.0;
   const int maxiterations = 20;
   float iterations = 0.0;
   float r = 0.0; 
   float dr = 1.0;
   for (int i = 0; i < maxiterations; i+=1) {
       dz = n*pow(m, 3.5)*dz + 1.0;
       vec3 sphericalZ = cart2polar( zeta ); 
       float newx = pow(sphericalZ.x, n) * sin(sphericalZ.y*n) * cos(sphericalZ.z*n);
       float newy = pow(sphericalZ.x, n) * sin(sphericalZ.y*n) * sin(sphericalZ.z*n);
       float newz = pow(sphericalZ.x, n) * cos(sphericalZ.y*n);
       zeta.x = newx + st.x;
       zeta.y = newy + st.y;
       zeta.z = newz + st.z;

       m = dot(zeta, zeta);
       if ( m > 2.0 )
         break;
   }

   // distance estimation through the Hubbard-Douady potential from Inigo Quilez
   return vec2(0.25*log(m) * sqrt(m) / dz, iterations);
}
#endif

Dependencies:

Use:

mandelbulbSDF(<vec2> st)

Check it on Github



#ifndef FNC_MANDELBULBSDF
#define FNC_MANDELBULBSDF
float2 mandelbulbSDF( float3 st ) {
   float3 zeta = st;
   float m = dot(st,st);
   float dz = 1.0;
   float n = 8.0;
   const int maxiterations = 20;
   float iterations = 0.0;
   float r = 0.0; 
   float dr = 1.0;
   for (int i = 0; i < maxiterations; i+=1) {
       dz = n*pow(m, 3.5)*dz + 1.0;
       float3 sphericalZ = cart2polar( zeta ); 
       float newx = pow(sphericalZ.x, n) * sin(sphericalZ.y*n) * cos(sphericalZ.z*n);
       float newy = pow(sphericalZ.x, n) * sin(sphericalZ.y*n) * sin(sphericalZ.z*n);
       float newz = pow(sphericalZ.x, n) * cos(sphericalZ.y*n);
       zeta.x = newx + st.x;
       zeta.y = newy + st.y;
       zeta.z = newz + st.z;

       m = dot(zeta, zeta);
       if ( m > 2.0 )
         break;
   }

   // distance estimation through the Hubbard-Douady potential from Inigo Quilez
   return float2(0.25*log(m) * sqrt(m) / dz, iterations);
}
#endif

Examples

LYGIA is dual-licensed under the Prosperity License and the Patron License for sponsors and contributors.

Sponsors and contributors are automatically added to the Patron License and they can ignore the any non-commercial rule of the Prosperity Licensed software (please take a look to the exception).

It's also possible to get a permanent comercial license hook to a single and specific version of LYGIA.

Get the latest news and releases

Sign up for the news letter bellow, joing the LYGIA's channel on Discord or follow the Github repository