  ## ggx (`lygia`/`lighting`/`common`/`ggx`)

Dependencies:

Check it on Github

``````
#ifndef FNC_GGX
#define FNC_GGX

// Walter et al. 2007, "Microfacet Models for Refraction through Rough Surfaces"

// This one is not great on mediump. Read next comment
float GGX(const in float NoH, const in float roughness) {
float oneMinusNoHSquared = 1.0 - NoH * NoH;
float a = NoH * roughness;
float k = roughness / (oneMinusNoHSquared + a * a);
float d = k * k * INV_PI;
return saturateMediump(d);
}

float GGX(const in vec3 N, const in vec3 H, const in float NoH, float roughness) {
#if defined(TARGET_MOBILE) || defined(PLATFORM_RPI) || defined(PLATFORM_WEBGL)
// In mediump, there are two problems computing 1.0 - NoH^2
// 1) 1.0 - NoH^2 suffers floating point cancellation when NoH^2 is close to 1 (highlights)
// 2) NoH doesn't have enough precision around 1.0
// Both problem can be fixed by computing 1-NoH^2 in highp and providing NoH in highp as well

// However, we can do better using Lagrange's identity:
//      ||a x b||^2 = ||a||^2 ||b||^2 - (a . b)^2
// since N and H are unit vectors: ||N x H||^2 = 1.0 - NoH^2
// This computes 1.0 - NoH^2 directly (which is close to zero in the highlights and has
// enough precision).
// Overall this yields better performance, keeping all computations in mediump
vec3 NxH = cross(N, H);
float oneMinusNoHSquared = dot(NxH, NxH);
#else
float oneMinusNoHSquared = 1.0 - NoH * NoH;
#endif

float a = NoH * roughness;
float k = roughness / (oneMinusNoHSquared + a * a);
float d = k * k * INV_PI;
return saturateMediump(d);
}

#endif
``````

Dependencies:

Check it on Github

``````
#ifndef FNC_COMMON_GGX
#define FNC_COMMON_GGX

// Walter et al. 2007, "Microfacet Models for Refraction through Rough Surfaces"

// In mediump, there are two problems computing 1.0 - NoH^2
// 1) 1.0 - NoH^2 suffers floating point cancellation when NoH^2 is close to 1 (highlights)
// 2) NoH doesn't have enough precision around 1.0
// Both problem can be fixed by computing 1-NoH^2 in highp and providing NoH in highp as well

// However, we can do better using Lagrange's identity:
//      ||a x b||^2 = ||a||^2 ||b||^2 - (a . b)^2
// since N and H are unit vectors: ||N x H||^2 = 1.0 - NoH^2
// This computes 1.0 - NoH^2 directly (which is close to zero in the highlights and has
// enough precision).
// Overall this yields better performance, keeping all computations in mediump

float GGX(float NoH, float linearRoughness) {
float oneMinusNoHSquared = 1.0 - NoH * NoH;
float a = NoH * linearRoughness;
float k = linearRoughness / (oneMinusNoHSquared + a * a);
float d = k * k * INV_PI;
return saturateMediump(d);
}

float GGX(float3 N, float3 H, float NoH, float linearRoughness) {
float3 NxH = cross(N, H);
float oneMinusNoHSquared = dot(NxH, NxH);

float a = NoH * linearRoughness;
float k = linearRoughness / (oneMinusNoHSquared + a * a);
float d = k * k * INV_PI;
return saturateMediump(d);
}

#endif
``````