lygia
/v1.1.6
/lighting
/pbrClearCoat
)simple PBR shading model
Dependencies:
lygia
/v1.1.6
/math
/saturate
.glsl
lygia
/v1.1.6
/color
/tonemap
.glsl
lygia
/v1.1.6
/lighting
/material
.glsl
lygia
/v1.1.6
/lighting
/fresnelReflection
.glsl
lygia
/v1.1.6
/lighting
/envMap
.glsl
lygia
/v1.1.6
/lighting
/light
/new
.glsl
lygia
/v1.1.6
/lighting
/light
/resolve
.glsl
lygia
/v1.1.6
/lighting
/ior
/2f0
.glsl
lygia
/v1.1.6
/lighting
/reflection
.glsl
lygia
/v1.1.6
/lighting
/common
/ggx
.glsl
lygia
/v1.1.6
/lighting
/common
/kelemen
.glsl
lygia
/v1.1.6
/lighting
/common
/specularAO
.glsl
lygia
/v1.1.6
/lighting
/common
/envBRDFApprox
.glsl
Use:
<vec4> pbr( <Material> _material )
#ifndef CAMERA_POSITION
#define CAMERA_POSITION vec3(0.0, 0.0, -10.0);
#endif
#ifndef LIGHT_POSITION
#define LIGHT_POSITION vec3(0.0, 10.0, -50.0)
#endif
#ifndef LIGHT_COLOR
#define LIGHT_COLOR vec3(0.5, 0.5, 0.5)
#endif
#ifndef LIGHT_INTENSITY
#define LIGHT_INTENSITY 1.0
#endif
#ifndef IBL_LUMINANCE
#define IBL_LUMINANCE 1.0
#endif
#ifndef FNC_PBRCLEARCOAT
#define FNC_PBRCLEARCOAT
vec4 pbrClearCoat(const Material _mat) {
// Calculate Color
vec3 diffuseColor = _mat.albedo.rgb * (vec3(1.0) - _mat.f0) * (1.0 - _mat.metallic);
vec3 specularColor = mix(_mat.f0, _mat.albedo.rgb, _mat.metallic);
// Cached
Material M = _mat;
M.V = normalize(CAMERA_POSITION - M.position); // View
M.NoV = dot(M.normal, M.V); // Normal . View
M.R = reflection(M.V, M.normal, M.roughness); // Reflection
vec3 f0 = ior2f0(M.ior);
vec3 R = reflection(M.V, M.normal, M.roughness);
#if defined(MATERIAL_HAS_NORMAL) || defined(MATERIAL_HAS_CLEAR_COAT_NORMAL)
// We want to use the geometric normal for the clear coat layer
float clearCoatNoV = clampNoV(dot(M.clearCoatNormal, M.V));
vec3 clearCoatNormal = M.clearCoatNormal;
#else
float clearCoatNoV = M.NoV;
vec3 clearCoatNormal = M.normal;
#endif
// Ambient Occlusion
// ------------------------
float ssao = 1.0;
// #if defined(FNC_SSAO) && defined(SCENE_DEPTH) && defined(RESOLUTION) && defined(CAMERA_NEAR_CLIP) && defined(CAMERA_FAR_CLIP)
// vec2 pixel = 1.0/RESOLUTION;
// ssao = ssao(SCENE_DEPTH, gl_FragCoord.xy*pixel, pixel, 1.);
// #endif
// Global Ilumination ( mage Based Lighting )
// ------------------------
vec3 E = envBRDFApprox(specularColor, M);
// // This is a bit of a hack to pop the metalics
// float specIntensity = (2.0 * M.metallic) *
// saturate(-1.1 + NoV + M.metallic) * // Fresnel
// (M.metallic + (.95 - M.roughness) * 2.0); // make smaller highlights brighter
float diffAO = min(M.ambientOcclusion, ssao);
float specAO = specularAO(M, diffAO);
vec3 Fr = vec3(0.0, 0.0, 0.0);
Fr = envMap(M) * E * 2.0;
#if !defined(PLATFORM_RPI)
Fr += tonemap( fresnelReflection(M) ) * M.metallic * (1.0-M.roughness) * 0.2;
#endif
Fr *= specAO;
vec3 Fd = diffuseColor;
#if defined(SCENE_SH_ARRAY)
Fd *= tonemap( sphericalHarmonics(M.normal) );
#endif
Fd *= diffAO;
Fd *= (1.0 - E);
vec3 Fc = fresnel(f0, clearCoatNoV) * M.clearCoat;
vec3 attenuation = 1.0 - Fc;
Fd *= attenuation;
Fr *= attenuation;
// vec3 clearCoatLobe = isEvaluateSpecularIBL(p, clearCoatNormal, V, clearCoatNoV);
vec3 clearCoatR = reflection(M.V, clearCoatNormal, M.clearCoatRoughness);
vec3 clearCoatE = envBRDFApprox(f0, clearCoatNoV, M.clearCoatRoughness);
vec3 clearCoatLobe = vec3(0.0, 0.0, 0.0);
clearCoatLobe += envMap(clearCoatR, M.clearCoatRoughness, 1.0) * clearCoatE * 3.;
clearCoatLobe += tonemap( fresnelReflection(clearCoatR, f0, clearCoatNoV) ) * (1.0-M.clearCoatRoughness) * 0.2;
Fr += clearCoatLobe * (specAO * M.clearCoat);
vec4 color = vec4(0.0, 0.0, 0.0, 1.0);
color.rgb += Fd * IBL_LUMINANCE; // Diffuse
color.rgb += Fr * IBL_LUMINANCE; // Specular
// LOCAL ILUMINATION
// ------------------------
vec3 lightDiffuse = vec3(0.0, 0.0, 0.0);
vec3 lightSpecular = vec3(0.0, 0.0, 0.0);
// TODO:
// - Add support for multiple lights
//
{
#if defined(LIGHT_DIRECTION)
LightDirectional L = LightDirectionalNew();
#elif defined(LIGHT_POSITION)
LightPoint L = LightPointNew();
#endif
#if defined(LIGHT_DIRECTION) || defined(LIGHT_POSITION)
lightResolve(diffuseColor, specularColor, M, L, lightDiffuse, lightSpecular);
color.rgb += lightDiffuse; // Diffuse
color.rgb += lightSpecular; // Specular
vec3 h = normalize(M.V + L.direction);
float NoH = saturate(dot(M.normal, h));
float NoL = saturate(dot(M.normal, L.direction));
float LoH = saturate(dot(L.direction, h));
#if defined(MATERIAL_HAS_CLEAR_COAT_NORMAL)
// If the material has a normal map, we want to use the geometric normal
// instead to avoid applying the normal map details to the clear coat layer
N = clearCoatNormal;
float clearCoatNoH = saturate(dot(clearCoatNormal, h));
#else
float clearCoatNoH = saturate(dot(M.normal, M.V));
#endif
// clear coat specular lobe
float D = GGX(M.normal, h, clearCoatNoH, M.clearCoatRoughness);
vec3 F = fresnel(f0, LoH) * M.clearCoat;
vec3 Fcc = F;
vec3 clearCoat = D *
kelemen(LoH) *
F;
vec3 atten = (1.0 - Fcc);
#if defined(MATERIAL_HAS_CLEAR_COAT_NORMAL)
// If the material has a normal map, we want to use the geometric normal
// instead to avoid applying the normal map details to the clear coat layer
float clearCoatNoL = saturate(dot(clearCoatNormal, L.direction));
color.rgb = color.rgb * atten * NoL + (clearCoat * clearCoatNoL * L.color) * L.intensity * L.shadow;
#else
// color.rgb = color.rgb * atten + (clearCoat * LIGHT_COLOR) * (LIGHT_INTENSITY * NoL * M.shadow);
color.rgb = color.rgb + (clearCoat * L.color) * (L.intensity * L.shadow * NoL);
#endif
#endif
}
// Final
color.rgb *= M.ambientOcclusion;
color.rgb += M.emissive;
color.a = M.albedo.a;
return color;
}
#endif
Dependencies:
lygia
/v1.1.6
/lighting
/material
.glsl
lygia
/v1.1.6
/lighting
/fresnelReflection
.glsl
lygia
/v1.1.6
/lighting
/light
/point
.glsl
lygia
/v1.1.6
/lighting
/light
/directional
.glsl
lygia
/v1.1.6
/lighting
/envMap
.glsl
lygia
/v1.1.6
/lighting
/ior
/2f0
.glsl
lygia
/v1.1.6
/lighting
/reflection
.glsl
lygia
/v1.1.6
/lighting
/common
/ggx
.glsl
lygia
/v1.1.6
/lighting
/common
/kelemen
.glsl
lygia
/v1.1.6
/lighting
/common
/specularAO
.glsl
lygia
/v1.1.6
/lighting
/common
/envBRDFApprox
.glsl
lygia
/v1.1.6
/lighting
/UnityLightingCommon
.glsl
Use:
<float4> pbr( <Material> _material )
#ifndef CAMERA_POSITION
#if defined(UNITY_COMPILER_HLSL)
#define CAMERA_POSITION _WorldSpaceCameraPos
#else
#define CAMERA_POSITION float3(0.0, 0.0, -10.0)
#endif
#endif
#ifndef LIGHT_POSITION
#if defined(UNITY_COMPILER_HLSL)
#define LIGHT_POSITION _WorldSpaceLightPos0.xyz
#else
#define LIGHT_POSITION float3(0.0, 10.0, -50.0)
#endif
#endif
#ifndef LIGHT_COLOR
#if defined(UNITY_COMPILER_HLSL)
#define LIGHT_COLOR _LightColor0.rgb
#else
#define LIGHT_COLOR float3(0.5, 0.5, 0.5)
#endif
#endif
#ifndef LIGHT_INTENSITY
#define LIGHT_INTENSITY 1.0
#endif
#ifndef IBL_LUMINANCE
#define IBL_LUMINANCE 1.0
#endif
#ifndef FNC_PBRCLEARCOAT
#define FNC_PBRCLEARCOAT
float4 pbrClearCoat(const Material _mat) {
// Calculate Color
float3 diffuseColor = _mat.albedo.rgb * (float3(1.0, 1.0, 1.0) - _mat.f0) * (1.0 - _mat.metallic);
float3 specularColor = lerp(_mat.f0, _mat.albedo.rgb, _mat.metallic);
float3 N = _mat.normal; // Normal
float3 V = normalize(CAMERA_POSITION - _mat.position); // View
float NoV = saturate(dot(N, V)); // Normal . View
float3 f0 = ior2f0(_mat.ior);
float3 R = reflection(V, N, _mat.roughness);
#if defined(MATERIAL_HAS_NORMAL) || defined(MATERIAL_HAS_CLEAR_COAT_NORMAL)
// We want to use the geometric normal for the clear coat layer
float clearCoatNoV = clampNoV(dot(_mat.clearCoatNormal, V));
float3 clearCoatNormal = _mat.clearCoatNormal;
#else
float clearCoatNoV = NoV;
float3 clearCoatNormal = N;
#endif
// Ambient Occlusion
// ------------------------
float ssao = 1.0;
// #if defined(FNC_SSAO) && defined(SCENE_DEPTH) && defined(RESOLUTION) && defined(CAMERA_NEAR_CLIP) && defined(CAMERA_FAR_CLIP)
// float2 pixel = 1.0/RESOLUTION;
// ssao = ssao(SCENE_DEPTH, gl_FragCoord.xy*pixel, pixel, 1.);
// #endif
float diffuseAO = min(_mat.ambientOcclusion, ssao);
float specAO = specularAO(NoV, diffuseAO, _mat.roughness);
// Global Ilumination ( mage Based Lighting )
// ------------------------
float3 E = envBRDFApprox(specularColor, NoV, _mat.roughness);
// This is a bit of a hack to pop the metalics
float specIntensity = (2.0 * _mat.metallic) *
saturate(-1.1 + NoV + _mat.metallic) * // Fresnel
(_mat.metallic + (.95 - _mat.roughness) * 2.0); // make smaller highlights brighter
float3 Fr = float3(0.0, 0.0, 0.0);
Fr = tonemap( envMap(R, _mat.roughness, _mat.metallic) ) * E * specIntensity;
Fr += tonemap( fresnelReflection(R, f0, NoV) ) * _mat.metallic * (1.0-_mat.roughness) * 0.2;
Fr *= specAO;
float3 Fd = float3(0.0, 0.0, 0.0);
Fd = diffuseColor;
#if defined(SCENE_SH_ARRAY)
Fd *= tonemap( sphericalHarmonics(N) );
#endif
Fd *= diffuseAO;
Fd *= (1.0 - E);
float3 Fc = fresnel(f0, clearCoatNoV) * _mat.clearCoat;
float3 attenuation = 1.0 - Fc;
Fd *= attenuation;
Fr *= attenuation;
// float3 clearCoatLobe = isEvaluateSpecularIBL(p, clearCoatNormal, V, clearCoatNoV);
float3 clearCoatR = reflection(V, clearCoatNormal, _mat.clearCoatRoughness);
float3 clearCoatE = envBRDFApprox(f0, clearCoatNoV, _mat.clearCoatRoughness);
float3 clearCoatLobe = float3(0.0, 0.0, 0.0);
clearCoatLobe += tonemap( envMap(clearCoatR, _mat.clearCoatRoughness, 1.0) ) * clearCoatE;
clearCoatLobe += tonemap( fresnelReflection(clearCoatR, f0, clearCoatNoV) ) * (1.0-_mat.clearCoatRoughness);
Fr += clearCoatLobe * (specAO * _mat.clearCoat);
float4 color = float4(0.0, 0.0, 0.0, 1.0);
color.rgb += Fd * IBL_LUMINANCE; // Diffuse
color.rgb += Fr * IBL_LUMINANCE; // Specular
// LOCAL ILUMINATION
// ------------------------
float3 lightDiffuse = float3(0.0, 0.0, 0.0);
float3 lightSpecular = float3(0.0, 0.0, 0.0);
{
#if defined(LIGHT_DIRECTION)
float f0 = max(_mat.f0.r, max(_mat.f0.g, _mat.f0.b));
lightDirectional(diffuseColor, specularColor, N, V, NoV, _mat.roughness, f0, _mat.shadow, lightDiffuse, lightSpecular);
#elif defined(LIGHT_POSITION)
float f0 = max(_mat.f0.r, max(_mat.f0.g, _mat.f0.b));
lightPoint(diffuseColor, specularColor, N, V, NoV, _mat.roughness , f0, _mat.shadow, lightDiffuse, lightSpecular);
#endif
}
color.rgb += lightDiffuse; // Diffuse
color.rgb += lightSpecular; // Specular
// Clear Coat
#if defined(LIGHT_DIRECTION) || defined(LIGHT_POSITION)
#if defined(LIGHT_DIRECTION)
float3 L = normalize(LIGHT_DIRECTION);
#elif defined(LIGHT_POSITION)
float3 L = normalize(LIGHT_POSITION - _mat.position);
#endif
float3 H = normalize(V + L);
float NoL = saturate(dot(N, L));
float LoH = saturate(dot(L, H));
#if defined(MATERIAL_HAS_CLEAR_COAT_NORMAL)
// If the material has a normal map, we want to use the geometric normal
// instead to avoid applying the normal map details to the clear coat layer
N = clearCoatNormal;
float clearCoatNoH = saturate(dot(clearCoatNormal, H));
#else
float clearCoatNoH = saturate(dot(N, V));
#endif
// clear coat specular lobe
float D = GGX(N, H, clearCoatNoH, _mat.clearCoatRoughness);
float3 F = fresnel(f0, LoH) * _mat.clearCoat;
float3 Fcc = F;
float3 clearCoat = D *
kelemen(LoH) *
F;
float3 atten = (1.0 - Fcc);
#if defined(MATERIAL_HAS_CLEAR_COAT_NORMAL)
// If the material has a normal map, we want to use the geometric normal
// instead to avoid applying the normal map details to the clear coat layer
float clearCoatNoL = saturate(dot(clearCoatNormal, L));
color.rgb = color.rgb * atten * NoL + (clearCoat * clearCoatNoL * LIGHT_COLOR) * (LIGHT_INTENSITY * _mat.shadow);
#else
// color.rgb = color.rgb * atten + (clearCoat * LIGHT_COLOR) * (LIGHT_INTENSITY * NoL * _mat.shadow);
color.rgb = color.rgb + (clearCoat * LIGHT_COLOR) * (LIGHT_INTENSITY * NoL * _mat.shadow);
#endif
#endif
// Final
color.rgb *= _mat.ambientOcclusion;
color.rgb += _mat.emissive;
color.a = _mat.albedo.a;
return color;
}
#endif
LYGIA is dual-licensed under the Prosperity License and the Patron License for sponsors and contributors.
Sponsors and contributors are automatically added to the Patron License and they can ignore the any non-commercial rule of the Prosperity Licensed software (please take a look to the exception).
It's also possible to get a permanent comercial license hook to a single and specific version of LYGIA.
Sign up for the news letter bellow, joing the LYGIA's channel on Discord or follow the Github repository